Graph Based Multi-class Semi-supervised Learning Using Gaussian Process
نویسندگان
چکیده
This paper proposes a multi-class semi-supervised learning algorithm of the graph based method. We make use of the Bayesian framework of Gaussian process to solve this problem. We propose the prior based on the normalized graph Laplacian, and introduce a new likelihood based on softmax function model. Both the transductive and inductive problems are regarded as MAP (Maximum A Posterior) problems. Experimental results show that our method is competitive with the existing semi-supervised transductive and inductive methods.
منابع مشابه
Graph-based Semi-Supervised Regression and Its Extensions
In this paper we present a graph-based semisupervised method for solving regression problem. In our method, we first build an adjacent graph on all labeled and unlabeled data, and then incorporate the graph prior with the standard Gaussian process prior to infer the training model and prediction distribution for semi-supervised Gaussian process regression. Additionally, to further boost the lea...
متن کاملBayesian Co-Training
We propose a Bayesian undirected graphical model for co-training, or more generally for semi-supervised multi-view learning. This makes explicit the previously unstated assumptions of a large class of co-training type algorithms, and also clarifies the circumstances under which these assumptions fail. Building upon new insights from this model, we propose an improved method for co-training, whi...
متن کاملHigh-quality Training Data Selection using Latent Topics for Graph-based Semi-supervised Learning
In a multi-class document categorization using graph-based semi-supervised learning (GBSSL), it is essential to construct a proper graph expressing the relation among nodes and to use a reasonable categorization algorithm. Furthermore, it is also important to provide high-quality correct data as training data. In this context, we propose a method to construct a similarity graph by employing bot...
متن کاملGraph-Based Lexicon Expansion with Sparsity-Inducing Penalties
We present novel methods to construct compact natural language lexicons within a graphbased semi-supervised learning framework, an attractive platform suited for propagating soft labels onto new natural language types from seed data. To achieve compactness, we induce sparse measures at graph vertices by incorporating sparsity-inducing penalties in Gaussian and entropic pairwise Markov networks ...
متن کاملMulti-class Semi-supervised Learning with the e-truncated Multinomial Probit Gaussian Process
Recently, the null category noise model has been proposed as a simple and elegant solution to the problem of incorporating unlabeled data into a Gaussian process (GP) classification model. In this paper, we show how this binary likelihood model can be generalised to the multi-class setting through the use of the multinomial probit GP classifier. We present a Gibbs sampling scheme for sampling t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006